Using Domain-Specific Verbs for Term Classification

نویسندگان

  • Irena Spasic
  • Goran Nenadic
  • Sophia Ananiadou
چکیده

In this paper we present an approach to term classification based on verb complementation patterns. The complementation patterns have been automatically learnt by combining information found in a corpus and an ontology, both belonging to the biomedical domain. The learning process is unsupervised and has been implemented as an iterative reasoning procedure based on a partial order relation induced by the domain-specific ontology. First, term recognition was performed by both looking up the dictionary of terms listed in the ontology and applying the C/NC-value method. Subsequently, domain-specific verbs were automatically identified in the corpus. Finally, the classes of terms typically selected as arguments for the considered verbs were induced from the corpus and the ontology. This information was used to classify newly recognised terms. The precision of the classification method reached 64%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using automatically learnt verb selectional preferences for classification of biomedical terms

In this paper, we present an approach to term classification based on verb selectional patterns (VSPs), where such a pattern is defined as a set of semantic classes that could be used in combination with a given domain-specific verb. VSPs have been automatically learnt based on the information found in a corpus and an ontology in the biomedical domain. Prior to the learning phase, the corpus is...

متن کامل

Lexical Semantics and Selection of TAM in Bantu Languages: A Case of Semantic Classification of Kiswahili Verbs

The existing literature on Bantu verbal semantics demonstrated that inherent semantic content of verbs pairs directly with the selection of tense, aspect and modality formatives in Bantu languages like Chasu, Lucazi, Lusamia, and Shiyeyi. Thus, the gist of this paper is the articulation of semantic classification of verbs in Kiswahili based on the selection of TAM types. This is because the sem...

متن کامل

The Effect of Using Keyword Method on EFL Learners' Learning and Retrieving English Verb Types

This study used keyword method during encoding information in transferring information from short term memory to make the retrieval easier. For this purpose, 50 adult female elementary students were chosen to participate in this study. This study required two groups of learners (control and experimental groups). The experimental group enjoyed some special flashcards which each of them involved ...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Developing a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity

Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003